Compare Page

Completeness of mandatory attributes

Characteristic Name: Completeness of mandatory attributes
Dimension: Completeness
Description: The attributes which are mandatory for a complete representation of a real world entity must contain values and cannot be null .
Granularity: Element
Implementation Type: Rule-based approach
Characteristic Type: Declarative

Verification Metric:

The number of null values reported in a mandatory attribute per thousand records

GuidelinesExamplesDefinitons

The implementation guidelines are guidelines to follow in regard to the characteristic. The scenarios are examples of the implementation

Guidelines: Scenario:
Specify which attributes are required to maintain a meaningful representation of an entity. 1) A sales order should at least have values for order number, Quantity, Price and Total (Sales order is the record)
Specify the states of an entity where the above identified attributes become mandatory values (1)Order number quantity and total should be available as mandatory by the time order is created whereas price will become mandatory when the order is approved. (States :"Order created" "Order approved") (2) Product is retired and now has a product-last-available-date
Specify the dependencies of entities in operational context to identify the mandatory values (1)Invoice number should exist to create a gate pass
Specify default values where possible (1) Default country is Australia for those who fill the application from Australian IP addresses

Validation Metric:

How mature is the creation and implementation of the DQ rules to handle mandatory values

These are examples of how the characteristic might occur in a database.

Example: Source:
1) Let us consider a Person relation with the attributes Name, Surname, BirthDate,and Email. The relation is shown in Figure 2.2. For the tuples with Id equalto2,3,and 4, the Email value is NULL. Let us suppose that the person represented by tuple 2 has no e-mail: no incompleteness case occurs. If the person represented by tuple 3 has an e-mail, but its value is not known then tuple 3 presents an incompleteness. Finally, if it is not known whether the person represented by tuple 4 has an e-mail or not, incompleteness may not be the case.

ID 1

2 3 4

Name John

Edward Anthony Marianne

Surname Smith

Monroe White Collins

BirthDate 03/17/1974 02/03/1967 01/01/1936 11/20/1955

Email

smith@abc.it NULL NULL NULL

not existing existing but unknown not known if existing

Fig. 2.2. The Person relation, with different null value meanings for the e-mail attribute

2) if Dept is a relation representing the employees of a given department, and one specific employee of the department is not represented as a tuple of Dept, then the tuple corresponding to the missing employee is in ref(Dept),and ref(Dept) differs from Dept in exactly that tuple.

C. Batini and M, Scannapieco, “Data Quality: Concepts, Methodologies, and Techniques”, Springer, 2006.
if a column should contain at least one occurrence of all 50 states, but the column contains only 43 states, then the population is incomplete. Y. Lee, et al., “Journey to Data Quality”, Massachusetts Institute of Technology, 2006.
1) A database contains information on repairs done to capital equipment. How- ever, it is a known fact that sometimes the repairs are done and the information about the repair is just not entered into the database. This is the result of lack of concern on the part of the repair people and a lack of enforcement on the part of their supervisors. It is estimated that the amount of missing information is about 5%. This database is probably a good-quality database for assessing the general health of capital equipment. Equipment that required a great deal of expense to maintain can be identified from the data. Unless the missing data is disproportionately skewed, the records are usable for all ordinary decisions. However, trying to use it as a base for evaluating information makes it a low-quality database. The missing transactions could easily tag an important piece of equipment as satisfying a warranty when in fact it does not.

2) a BIRTH_DATE value left blank would not be accurate because all of us have birth dates.

J. E. Olson, “Data Quality: The Accuracy Dimension”, Morgan Kaufmann Publishers, 9 January 2003.

The Definitions are examples of the characteristic that appear in the sources provided.

Definition: Source:
Domain Level: Data element is 1. Always required be populating and not defaulting; or 2. Required based on the condition of another data element. Entity Level: The required domains that comprise an entity exist and are not defaulted in aggregate. B. BYRNE, J. K., D. MCCARTY, G. SAUTER, H. SMITH, P WORCESTER 2008. The information perspective of SOA design Part 6:The value of applying the data quality analysis pattern in SOA. IBM corporation.
A given data element (fact) has a full value stored for all records that should have a value. ENGLISH, L. P. 2009. Information quality applied: Best practices for improving business information, processes and systems, Wiley Publishing.
Determined the extent to which data is not missing. For example, an order is not complete without a price and quantity. G. GATLING, C. B., R. CHAMPLIN, H. STEFANI, G. WEIGEL 2007. Enterprise Information Management with SAP, Boston, Galileo Press Inc.
Completeness refers to the expectation that certain attributes are expected to have assigned values in a data set. Completeness rules can be assigned to a data set in three levels of constraints: 1. Mandatory attributes that require a value 3. Inapplicable attributes (such as maiden name for a single male), which may not have a value.2. Optional attributes, which may have a value. LOSHIN, D. 2001. Enterprise knowledge management: The data quality approach, Morgan Kaufmann Pub.
An expectation of completeness indicates that certain attributes should be assigned values in a data set. Completeness rules can be assigned to a data set in three levels of constraints:1. Mandatory attributes that require a value, 2. Optional attributes, which may have a value based on some set of conditions, and 3. Inapplicable attributes, (such as maiden name for a single male), which may not have a value. LOSHIN, D. 2006. Monitoring Data quality Performance using Data Quality Metrics. Informatica Corporation.

 

Ease of data access

Characteristic Name: Ease of data access
Dimension: Availability and Accessability
Description: Data should be easily accessible in a form that is suitable for its intended use.
Granularity: Information object
Implementation Type: Process-based approach
Characteristic Type: Usage

Verification Metric:

The number of tasks failed or under performed due to lack of ease in data access
The number of complaints received due to lack of ease in data access

GuidelinesExamplesDefinitons

The implementation guidelines are guidelines to follow in regard to the characteristic. The scenarios are examples of the implementation

Guidelines: Scenario:
Routinely accessed information to continue operations, should be automatically delivered to stakeholders online without wasting their time to search for it. (1) Daily exchange rates are linked into the accounting application or maintained in a dash board on the accountants desktop.

(2) Production efficiency is made available on a display board in the production floor.

Information needed for management reporting purposes should be identified and catered through built in reports where the users do not have to create the reports themselves. (1) Order status is frequently searched information by different stake holder groups and hence a report is made available with multiple searching criteria.
Facilitate users by providing tools to query the database without using any specific technical knowledge and perform business analytics to bring innovation (1) Technical infrastructure supports the users to develop their own reports based on dynamic information needs without consulting technical staff.
Facilitate the user to filter the relevant information depending on the need. (1) Sales report with filtering criteria for customer and date range.
The interfaces and reports should be created conveniently the users do not have to write complex queries or further process information before usage. (1) Product prices are ordered as per "Relevance" or "Price" to enable an e-commerce customer on a purchase decision

Validation Metric:

How mature is the process of maintaining ease in data access

These are examples of how the characteristic might occur in a database.

Example: Source:
Consider a database containing orders from customers. A practice for handling complaints and returns is to create an “adjustment” order for backing out the original order and then writing a new order for the corrected information if applicable. This procedure assigns new order numbers to the adjustment and replacement orders. For the accounting department, this is a high-quality database. All of the numbers come out in the wash. For a business analyst trying to determine trends in growth of orders by region, this is a poor-quality database. If the business analyst assumes that each order number represents a distinct order, his analysis will be all wrong. Someone needs to explain the practice and the methods necessary to unravel the data to get to the real numbers (if that is even possible after the fact). J. E. Olson, “Data Quality: The Accuracy Dimension”, Morgan Kaufmann Publishers, 9 January 2003.

The Definitions are examples of the characteristic that appear in the sources provided.

Definition: Source:
Accessibility refers to the physical conditions in which users can obtain data Clarity refers to the data’s information environment including appropriate metadata. LYON, M. 2008. Assessing Data Quality ,
Monetary and Financial Statistics.
Bank of England. http://www.bankofengland.co.uk/
statistics/Documents/ms/articles/art1mar08.pdf.
Speed and ease of locating and obtaining an information object relative to a particular activity STVILIA, B., GASSER, L., TWIDALE, M. B. & SMITH, L. C. 2007. A framework for information quality assessment. Journal of the American Society for Information Science and Technology, 58, 1720-1733.
Data are available or easily or quickly retrieved. WANG, R. Y. & STRONG, D. M. 1996. Beyond accuracy: What data quality means to data consumers. Journal of management information systems, 5-33.